TCOPY ____ OF M

Notes on Linear Programming: Part XV

MINIMIZING THE NUMBER OF CARRIERS
TO MEET A FIXED SCHEDULE

by

G. B. Dantzig
D. R. Fulkerson

/

{o

P—569

24 August 1954

HARD COPY  §.
MICROFICHE  §.

13

 RAND e

00 MAIN §T ¢ SANTA MONI « CALI



SUMMARY
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—>> It 18 shown that the problem of determining the minimm
number of carriers required toc meet a fixed schedule of trans-

portation can bs made into a linear programming problem. ( )
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TO MEET A PIXED SCHEDULE -
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G. B. Dantzig
D. R. Pulkerson

1. INTRODUCTION

cC. Tgmpkinl (see [}]) has given a discrete idealization of
& scheduling prcblem which arose in the routing of Navy fue:. oil
tankers. A combinatorial problem of this kind has also been dis—
cussed by J. Robinson and J. Walsh [2], together with a proposed
method of computation. The algorithm they outline, however, f{ails
to narrow the number of possibllities sufficiently to make it a
feasible computaticnal metrod for most problems.

In this note we show how the tanker scheduling problem can
bc'uade irtc a linear programming problem of transportation type,
albeit large. The size of the system is mitigated somewhat by tne
following facts: (i) most of the variavles are constrained to be
sero, (2) the minimizing fcrm 1s particularly simpie, and (3) even
a large transportation type prodblem having no special features can

be solved by hand using the simplex algoerithm [1].




2. THE PROBLEM

A rectangular array of spaces {s furnished, one row for oioh

ploiup point and one coiumn for each discharge point. In sach
space (1,)), t=1,2,...,m; J=1,2,...,n i8 a sequence of numbers

tt,. k=1,2,... representing the times at which a tanker 1is to
(Y

load fully at pickup point 1 to deliver to destination J. PMor

example, in the array

1 2 3
iy, &, 7, 10, 13 9, 15 6, 12
2 |3, 6, 9, 12 1, 0, 13, 15! €&, 10, 15} °

the sequence 3, 6, 9, 12 1n box (2,1) means that at these times
e tanker is to begin loading at pickup point 2 for delivery to
discrarge point 1. MNultiple loads to go from i to J can be taken
care of by repetitions in the sequence ttj‘ We make the further
assumption, not made in (3], that the total number of entries in
the tab.e ¢t = (t:J) 1s finite.

In addition, two arrays of positive numbers ‘14 and biJ are
given, where ‘13 represents the loading-traveling time from 1 to
J, and biJ the unloading—-traveling time from J to {.

The prublem is to rearrange the numbers t:J into s sequences

such that

et



(2.1) each sequence 18 monotone increasing;

k k .
(2.2) 1 ¢ 3 <t 2 are consecutive nunbers in any one
1,4, 7 1ad5 '
of the s sequences, then
k
2 1
t -t > a + Db H
1d0 "1d, =749 19
(2.3) » is minimal.

In other words, each sequence is a sehedule for one tanker, and

thie objective i3 to meet the fixed achedule given by table t with

& minimum numder of tankers.

If, in the example, we take

then a feasidle schedule

by the rearrangement

using seven tankers would be represented

(1) &5, =1, tgy = 5, thy =T, tf) =13
(2) ¢ = 3, tay =64 13,79, t -5
(3) tf =4, tp =9, =18

(8) tly =6, t3; =10, t3y =15

(%) t?l «7, t§3 - 10, cge = 13

(6) cgz- 12

(7) t), = 10 -
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3.

REFORMULATION AS A PRUOGRAMMING PROBLIM

For convenience in expusitiion, we suppese that the nuunbers ‘

1y bH nre positive 'ntegers. [t w!.l be Clear that

tis 18 not egrential to the method of solution.

Pirst construct the tatie cf sequen:es T = (t.';J + uu).

Tnhus, ’I";J are the Limes when tankers Loaled at | wilil arrive at

J.

{.e

'Y

Def ' ne
A1 k - m .
nﬂ1 = punter of times tl.} e@ occure in row { of ¢;

NﬂJ * number of times 'I"i‘J e f occurs in column J of T;

o "01 18 the number of tankers loading at 1| at time g and

18 the number arriving at J at time g. Thus, e is defined

F K p
-z for @=1,2,...,max LU and %J is defined for @=1,2,...,max T';J.

For any schedule, denote the nunber of reassignmentis from

discnarge point J at time B to ioading point ! at time a Ly

Tnen for all possivie schedules, the lnequallities

a1pd’
(3.1) & x S
aga18s " By
b < n
p,s B1pJ = ol
(3.2) 5184 >0
are satisfled. In addition, it follows from (2.1) and (2.2) that
(3.3) byy >a-p  implies Xa1py " 0 .
The aystem (3.1) can be made into & system of equa.ities which




is formally of transportation type by introducing non—negative

slack variables Xay * Va4 and 2z = Ziﬂ)i! Xa1py Then (3.1)
e,

ma, re rewritten as

(3:4) Zy Tapy * Yy = Moy 0 ¥py 20
L Xgipy * %ag " Ngy + Xgg 20

g,J

oy @t tZ T Ehay . 220
<y + 2z = LN ’

B,y BJ g,y BJ

and hence eacn schedule ieads to an integral sclution of (3.2)
and (3.4) which satisfies condition (3.3).

Ccnversely, given any integral sclution cf (3.2), (3.3), and
(3.4), a schedule can be constructed from it as follows: Each
Xaq wii. be the number of tankers which start their individual
schedules at time @ from l.ading point |; 1.e., there will be

K

Xad sequences in the rearrangement which have a t,, =g as first
K k

\ ~ 0 . -
memter. De.ete one such ti P -ab from v; let p TioJo-c + 8,
Since N 0 at ieast -ne of the veriavles x ;
1 By 2% y ‘ atp J_ '’ 5B°J°

has a positive value. Select cne suun.,

L

qlilaoJo 191
g, > O. Assign @, as secon.] memver of the seqience.
171

Observe that by (3.3), a; -p, 2

Case 1. x > O was selected. Then there is a - g

l1°?

since Ng

4 y oo hence
1Yo

wt



k, k

tety, - t°, =a, -f_ +a > a
1.l"l 1o"o % 2 1oJo = 154

eny (2.2) is savisfled. 8irike out @, from t and reduce

. , by unity.
J5"1"160:)"0 N’o‘o n.lil . »
Case 2. yb 9 > O was selected. In this case the segquence ends
: ovo

witha . Reduce y . by unity.
e Podo w’o’o rkl
If Cuse ! obtalned, let P, = - + Q , and
1%y, "Ry,
exumine the vaiues of the variables y Y « Again
o8y, ' 813y
one (f these must be positive. App.y either Case 1 or Case 2

with a, playlng the role of °o‘ Repetition of the proooduri out-

)|
lined must eventually end with the selecticon of some ”kd >0
(stnce by (3.3), a <P implles Xa1my " 0), thus compxotxg; one
of the sequences. The others can be gotten in the same way.

Not!:e that while many schedules can be gonstructed from
an integral sclution of (3.”), (3.3), end (3.4), the only physical
difrerence belweer tw. asuch 1 that there may be more than one .
tanker avallable at the same time at some discharge ;0int, in wnich
cape they are {nterchangealle.

Thus, the tanwker scheduiing prublem can be viewed as cne of
minimizing zix‘i ,» Lhe number ol sequences in & rearrangement

o

(or what is the same thing, maximizing Lthe variable z), over the

set cf Integra. szlutions® of (3.2, and (3.8) in which the

“Such whole number ac.utiuns always exist, e.g., take all
KcipJ « 0. Thile corresponds Lo the worst possible scheduie of

h J

oseigniny n different tanker for each trip. £ K
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variabies designated by (3.3) are fixed at zero. But 1t is well -3
known (1] that the maximum of a linear form defined over all L
golutions of (3.2) and (3.4) 1s always assumed at some tntcgraip 4
solution, and it 1s easy to see that this fact is not altered
by (mposing additional constraints of the form ‘1’3 « 0 . Hence
the scheduling problem can be suvlved by the simplex algorithm,

since the nature of the algorithm i1s such as to obtain a required

-integral solution. MNoreover, the algorithm 1s extremely simple

to appiy when the problem is of transpcrtation type, as is this
one.

It 1s obvious also that linear programming can te used to
optimize scheduies with respect to other costs. Por example,
1t would be simply a matter of changing the minimizing form,
ﬁoldxng z fixed, to find a schedule for a given nunber of tankers

which has the least sailing time.

8. A NUMERICAL EXAMPLE

We continue #ith the exampl.e of §2. First form the table of

ival t .
arriva imes ) 2 3
1 [). 6, 9, 12, 15 12, 18 6, 14
T - .
2 |4, 7, 10, 13 9, 12, 15, 17 | 6, 11, 16
|

Using this table and the one of loading times, compute all qci

BLAD
R R "W



0 T
nd N”. After discarding those rows and columns having Nag or-™

By Zero, one is left with the transportation problem whose
onstraints are inditated schematically in Fig. 1. Crossed out
ells mean that tp’ torrespondiing variable is constreined to bde fﬁ:ﬁ
ero by (3.3). The solution shown in Fig. 1 corresponds to the
chedule using seven tankers given in 2. This is s degenerate
oluti'n to the prcgramming protlem and so it is necessary in
pplying the simplex a..orithm to pick out other basic variablc!.
aving zero values. One way of doing this 1s shown in Pig. 1 by
he placement of the O's.

An optimal solution, reached after a few iterations, is
hown in Fisz. 2. It corresponds to the folliowing six—-tanker

chedule:

(1) til-l. t;}-s. t;,‘,-v, ‘%1"13

() ty =3, ty -6, 13 =9, 15 = 12

(3) 2 -a,, t], =9, ti, =15 '

(4)  tj5 =6, t3, =10, tg}—- 18 )
() ‘;1 -7, t§3 = 10, t;l - 12, tfe - 15

(6) ‘§1 = 10, tgz - 13
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